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ABSTRACT

A most important structural design objective today is the reliable applications of com-

posite materials. Reliability is associated with the probability of success or failure of a par-

ticular structure and/or composite material. For this study, the reliability associated with

strength was investigated.

The objective was to develop a prooabilistic anisotropic failure criterion and an ana-

lytical model which would account for the inherent strength scatter and enhance the struc-

tural reliability phase of composite design. This study analytically described the failure cri-

terion and probabilistic failure states of a anisotropic composite in a combined stress state.

Strength sensitivity and the failure mechanism within the domain of the combined stress

p., space was based on a numerical simulation of a theoretical mathematical model. The num-

erical simulation was analogous to physical testing of large composite sample sizes.

For the probabilistic and mechanistic independent case examined, the failure

envelopes as defined by the failure criterion exhibited a mechanistic dependent phenomen-

ological appearance. The size and shape of the resulting phenomenological failure enve-

lopes were dependent on the intrinsic shape parameters and their combinations associated

with the longitudinal strength and transverse strength. The probabilistic formulation of the

failure criterion could reconcile the difference between the phenomenologically coupled and

the uncoupled failure criterion. In addition, the probabilistic failure criterion would provide

analytical guidance for definitive experimental measurements. Finally, the probabilistic

failure criterion would provide the analytical conditions for optimal design and feedback in

-composite material development and quality assurance.
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I. INTRODUCTION

One important structural design objective today is the reliable applications of

composite materials, With respect to structural design, a first phase may establish the

design mission requirements, i.e., the strength and stiffness requirements of a particular

composite material. A second phase may determine the optimal composite material based

on the design requirements and trade-offs, i.e., the benefits and costs associated with a

particular composite material. A third phase may determine the optimal lamination

configuration by tailoring a particular composite, i.e., volume fraction of fiber and matrix.

ply angles, number of plies and ply groups. A forth phase may determine the structural

reliability of a particular composite. The structural design reliability phase was

characterized by evaluating the optimal structural stress or strength levels for an acceptable

number of probable successes or failures. Reliability was associated with probability

where structural performance and quality assurance were measured by the probability of

success or failure of a particular structure and/or composite material. The objective of this

study was to develop a analytical model for probabilistic anisotropic failure criterion which

would account for the inherent strength scatter (directional dependence) and quantify 'he

structural reliability phase of composite design.

The reliability of a structure would be quantitatively evaluated by examining the state

of stress at every spatial location against the magnitude of the failure state as defined by the

failure criterion. Mathematically, this consisted of mapping of a stress tensor associated

with the spatial domain of a particular structure into a failure domain. Operationally, the

spatial distribution of the stress state in a particular structure would be obtained by an

appropriate branch of stress analysis (elasticity, viscoelasticity, plasticity, etc.), which were

frequently implemented with many finite element analysis computer codes. The evaluation

11 -
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of (proximity to) the failure state required a theoretical mathematical model of the failure

state (as defined by the failure criterion). Many failure criterion have been proposed for

different materials (isotropic and anisotropic, crystalline and amorphous, and homogeneous

and nonhomogeneous composites) with different failure modes (yielding and brittle

failure). 'I hese failure criteria may be mechanistically or phenomenologically based.

This study analytically described the failure criterion and failure states of a

probabilistic anisotropic composite and was based on numerical simulations of a theoretical

mathematical model. Four domains (physical, stress, failure, and normalized) were

defined in this study in order to describe the spatial location of a particular structure in a

prescribed space. In a physical domain, each spatial location of a particular structure was

associated with a second rank stress tensor (ij) which had nine (9) scalar stress

components on three (3) orthogonal planes and was a function of coordinate orientation. It

was cumbersome to represent a tensor higher than the first rank tensor in the failure

domain. For simplicity and without loss of generality, the physical domain in this study

was restricted to:

each spatial location was associated with a second rank stress tensor (Crij) which only

had two non-zero scalar normal stress components (G1, G2) on one plane. [Ref. 1]

Furthermore, numerical investigations were confined to the first quadrant in order to

define this normal stress domain. The stress domain was defined as a biaxial normal stress

state (01, 02) with both the longitudinal stress in tension and the transverse stress in

tension.

With the restriction that the shear stress components were zero, the magnitude of the

,. normal stresses at each spatial location of a particular structure was mapped into a

respective point on the biaxial stress space. If all the stress points were interior to the

domain bounded by a strength distribution (failure envelope), then the entire structure was

12
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safe (0 < ai < Xi). If any of the stress points were exterior to the domain bounded by a

strength distribution (failure envelope), then the corresponding spatial location of a

particular structure was not safe (failed with ai > Xi). If the structure was monolithic

(single element), then tne entire structure failed. If the structure was redundant (load

sharing), then failure at a spatial location increased the probability of failure of the entire

structure. This condition would not cause the direct failure of the entire structure. [Ref. 2]

The failure domain (failure criteria) was described by the failure envelope or failure

surface in the biaxial stress domain and was expressed for this study by a mean strength

contour and a percentile strength contour. The failure domain was presented to identify the

parametric role of the variability in the longitudinal and transverse strength on the size and

shape of the failure criterion. The normalized domain was used as a radial loading path

transition to the biaxial stress domain.

I3
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II. BACKGROUND

One of the primary objectives of composite design is to capitalize on the high strength

and stiffness-to-weight ratios, which are important attributes of composite materials. A

composite is made of two or more woven or nonwoven constituent materials which are

fiber-reinforced in a matrix. A fiber is a single filament which is formed in one direction

(unidirectional). Matrix binds the filaments to form a composite material. [Ref. 3]

Fibers are the principal reinforcing or load carrying agent of a composite material.

The primary function of matrix is to support and protect the fibers, to provide a load distri-

bution or load sharing mechanism for a weak fiber, and to provide micro-redundancy

within a composite material. [Ref. 4]

A frequently occurring consequence of composite materials is that the physical prop-

erties of the resulting materials become highly anisotropic [Ref. 5]. An anisotropic com-

posite exhibits material properties that vary with orientation or direction of the reference

coordinate system [Ref. 6].

Failure characterization of composites is defined by the level of observation. A phe-

nomenological approach may be used to address the probabilistic anisotropic failure criteria

for composite materials. The phenomenological approach treats the heterogeneous com-

posites as a continuum, and an analytical model is used to correlate the occurrence of the

material responses without necessarily explaining the mechanisms which lead to these

material responses. The incorporation of probabilistic phenomena in failure criterion will

provide the ground work for the mechanistic understanding of the interacting failure mech-

anisms. The failure characterization of anisotropic composites will be treated herein in

accordance with the fundamentals of the phenomenological approach, where: (1) conduct a

numerical simulation of the theoretical model, which is analogous to physical testing of

14
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numerous composite samples, and (2) evaluate and interpret the results of the numerical

simulation and infer the definitive experiments. The phenomenological approach is

intended to aid experimental design; to facilitate interpolation, correlation, and retrieval of

experimental observations; and may be valuable for identifying definitive experiments to

quantitatively measure the mechanisms for failure. [Ref. 7]

Failure criterion is an analytical description of the failure states of a composite mate-

rial subjected to a complex state of stresses or strains [Ref. 8]. Failure criterion may be

geometrically interpreted as a limiting envelope in the stress space, i.e., the condition for

composite failure occurs when a given stress vector penetrates the failure envelope or fail-

ure surface [Ref. 9]. In other words, the failure envelope or failure surface is the ultimate

limit (lower bound-worst case) for a combined stress or strain state as defined by the failure

criterion [Ref. 10]. Taking into account the statistical scatter, the analytical structure of the

failure envelope or failure surface was the objective of this study.

In the development of probabilistic anisotropic failure criteria model for composite

materials, the primary theoretical basis of this study in the biaxial stress domain was on the

two parameter Weibull model for the uniaxial longitudinal and transverse stress states and

the resulting joint probability distribution function for the combined longitudinal and trans-

verse stress states. The two parameter Weibull distribution and the joint probability distri-

bution were expressed as a function of the applied stress ratio radial loading path in the two

dimensional biaxial stress domain (a1, 02). The Weibull distribution function was charac-

terized by an unimodal distribution and the joint probability distribution function was char-

acterized by an unimodal or bimodal distribution.

The combined stress state explored the statistical and mechanistic contributions of the ,,

probabilistic independent and mechanistic independent case. Joint probability for this study

was defined as the intrinsic strength which was activated by the stress ((;1) in the

1 5 %
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longitudinal or fiber direction is independent of the intrinsic strength which was activated

by the stress (02) in the transverse or matrix direction. The strengths were uncoupled and

the failure mechanisms were not interacting. [Ref. 11]

Mechanistic independence for this study was defined as a stress activated mechanism

where the stress components (al and (2) are independent. The corresponding failure

mechanism in the strain space was coupled through the stress/strain constitutive relation-
ship (eij = Sijklakl). In this relationship stress was the independent variable and strain was

the dependent variable.

The two-parameter Weibull distribution was based on the reliability function R(X)

and was detined for this study as:

R(X) = 1 - F(X)

where:

(1) R(X) was the Weibull distribution reliability function.

(2) F(X) was the Weibull distribution failure function.

(3) RI(X1) = exp (-(Xl/p3l)al). The reliability function in the uniaxial longitudinal or
fiber direction.

(4) R2(X2) = exp (-(X2 /I 2 )a2). The reliability function in the uniaxial transverse or
matrix direction.

(5) X 1 and X2 were the random intrinsic strengths in the uniaxial longitudinal and
transverse directions.

(6) c1 and P1 were the Weibull shape and scale parameters in the uniaxial longitudinal
or fiber direction.

(7) Cx2 and 032 were the Weibull shape and scale parameters in the uniaxial transverse or

matrix direction. [Ref. 12]

As a result of joint probability (independence) assumption for the combined stress

states, the joint probability function was based on the Weibull reliability functions in the

16
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uniaxial longitudinal and transverse directions respectively and for this study was defined

as:

R(X) = RI(XI) * R2(X2)

where:

(1) R(X) = exp [-((X1/3l)oal+(X2/132 )o 2 )]

(2) F(X) = 1-R(X) = l-exp [-((Xl/3l)al+(X2/132 )a2)]

(3) R(X) was the reliability function and was equivalent to the probability of success
associated with the random variables Xi and X2.

(4) F(X) was the failure function and was equivalent to the probabiit,, of failure asso-
ciated with the random variables X I and X2.

(5) X 1 was the random intrinsic stress or strength in the longitudinal or fiber direction.

(6) X2 was the random intrinsic stress or strength in the transverse or matrix direction.

(7) cxl and 131 were the joint probability shape (Al or alfal) and scale (BI or betal)
parameters respectively in the longitudinal or fiber direction.

(8) (X2 and 32 were the joint probability shape (A2 or alfa2) and scale (B2 or beta2)

parameters respectively in the transverse or matrix direction.

The joint probability failure envelope or failure surface of the failure criterion model

was represented for this study by a mean failure surface and a percentile failure surface.

The mean failure surface was the mean strength at which a number of samples failed for a

particular applied stress ratio. The percentile failure surface was the fraction of samples

which failed for a particular applied stress ratio. With respect to the intrinsic strengths, this

study explored the dependency of the mean and percentile failure envelopes on the shape

parameters ((xl and Cx2). The shape parameters were expressed as a function of the com-

bined stress state. "-
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II. NUMERICAL SIMULATION

Material failure involves numerous complex processes, many simplifications were

unavoidable in the mathematical formulation of failure states and failure criteria. The

assessment of those underlying simplifying assumptions would only be made through

comparison with experimental data. Experimental measurements and data collection were

very difficult for the evaluation of the combined stress states and the enormous number of

different stress ratios that were required to cover the entire six-dimensional (6-D) stress

space. As it was impractical for the overall verification of the entire failure domain, one

must focus verifications at selected critical states. Numerical simulations may be used to

deduce the consequences of the proposed models and as a comparison to identify regions

where the predictions by different models were large.

Appendix A and B described the development of the theoretical mathematical model

and the biaxial L/T numerical simulation respectively. The objective of this study was to

develop probabilistic anisotropic failure criteria for composites. The failure criterion model

for this study was defined as a function of the applied stress ratio and the joint probability

distribution function scale (13i and 32) and shape (al and a2) parameters. The initial con-

ditions for the theoretical mathematical model and biaxial LT numerical simulation were:

(1) sample size = 199.

(2) scale parameters 3I = 100 and 32 = 1.

(3) shape parameters ccl = 60 and Ct2 = 5.

(4) seventeen (17) applied stress ratios in the physical domain were based on the trans-
formed theta in the normalized domain and were equivalent to: 0, 10, 20, 30, 35,
39, 42, 44, 45, 46, 48, 51, 55, 60, 70, 80, and 90 degree radial loading paths.

18



A. CHANGES IN THE SHAPE PARAMETER

This study evaluated the effect of various high (cX1,2 = 60) and low (cz1,2 = 5) com-

binations of the uniaxial shape parameters (a l and a2) on the joint probability function.

The scale parameters (031 and 32) were fixed for this study.

The Coefficient of Variation (C.V.) is approximately equal to 1.2 divided by the

shape parameter (x) [Ref. 131. As a result, high shape parameter values were equivalent to

low dispersion or scatter, and low shape parameter values were equivalent to high disper-

sion or scatter.

The probability distribution function (pdf), which was the derivative of the joint

probability failure function F(S), illustrated the statistical dispersion (Figure 1). Figure 1

exhibited V w dispersion or scatter for a high shape parameter combination (cc I = 60 and

a= 60) and exhibited high dispersion or scatter for a low shape parameter combination

(ol 5 and oX2 = 5). Figure 1 was based on the applied stress ratio at the zero (0) degree

0.3

0.2

Sal=S,al=S

0.1

0.0.

0 50 100 150

Figure 1

PDF-NORMALIZED e=0
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radial loading path in the normalized stress domain (i.e., the uniaxial case along the longi-

tudinal or fiber direction).

At the applied stress ratios for the normalized stress domain zero (0) and ninety (90)

degree radial loading paths, the joint probability function was equivalent to the Weibull

distribution function in the uniaxial longitudinal and transverse directions respectively. As

a result, the joint probability function was characterized by a unimodal (one statistical

mode) distribution (Figure 2).

Figures 3 and 4 exhibited the combined stress state probability distribution functions

(pdf) at the applied stress ratio for the riormalized stress domain forty-five (45) degree

radial loading path. For the high-low shape parameter combination (cxl = 60 and cc2 = 5)

and the low-high shape parameter combination (cx1 = 5 and a2 = 60), the joint probability

function was characterized by a bimodal (two statistical modes interacting) distribution.

0.02

' 0.01

0.00 50 100 150

Figure 2

PDF-NORMALIZED Oal=$, az=5, 8=0
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For the high (ctl = 60 and at2 = 60) and low(ccl = 5 and oC2 = 5) shape parameter combi-

nations, the joint probability function was not distinguishable from the unimodal

distribution.

It was observed that the joint probability function changed from an unimodal to a

bimodal distribution as the combined applied stress ratio changed. The bimodal distribu-

tion with the two statistical modes interacting was of special interest to the probabilistic

independent and mechanistic independent case.

B. THEORETICAL MATHEMATICAL MODEL

In order to investigate the shape of the failure surface, a numerical simulation was

used to study the theoretical mathematical model at seventeen (17) applied stress ratios for a

particular sample size and a particular high and/or low combination of the joint probability

function shape parameters (ctl and az2). The numerical simulation explored the following

aspects of the theoretical mathematical model for a particular sample size, applied stress

ratio, and shape parameter combination in the stress domain:

(1) the joint probability reliability and failure functions

(2) the relative frequency strength

(3) the mean strength

(4) the percentile strength

(5) the mean and percentile strength contours.

For the theoretical mathematical model, the failure envelope or failure surface was defined

as:

(1) The mean strength contour which was normalized by the uniaxial scale parameters
(3I and 32).

(2) The mean strength contour which was normalized by the mean strengths at the
uniaxial longitudinal and transverse radial loading paths.
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(3) The percentile strength contours which were normalized by the uniaxial scale
parameters (13I and 132).

The mean strength and/or percentile strength contours were expressed at the seventeen (17)

applied stress ratios for a large sample size, and as a function of a particular shape parame-

ter (cq1 and (X2) combination.

C. BIAXIAL L/T NUMERICAL SIMULATION

In the stress domain the numerical simulation was used to study seventeen (17) dif-

ferent applied stress ratios for a particular sample size and a particular high and/or low

combination of the joint probability function shape parameters (cl and (X2). For the

numerical simulation a sample size (N) of 199 was selected and was based the concept of

Expected Rank, where the fractional probability was defined as N/(N+1). The most

important aspects of the numerical simulation for a particular sample size, applied stress

ratio and shape parameter combination in the stress domain were:

(1) the intrinsic strength space

(2) the realized strength space

(3) the relative frequency strength space

(4) the joint probability strength space

(5) the mean realized strength at different biaxial stress ratios and the mean realized
strength contour.

For the numerical simulation the failure envelope or failure surface was defined as:

(1) the mean realized strength contour of the seventeen (17) applied stress ratios for
199 samples and a particular shape parameter combination and was normalized by
the uniaxial scale parameters (131 and 132).

(2) the mean realized strength contour of the seventeen (17) applied stress ratios for
199 samples and a particular shape parameter combination and was normalized by
the mean strength at uniaxial longitudinal and transverse radial loading paths.
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IV. RE5,LT

- A.--ffAXIAL L/T NUMERICAL SIMULATION

Figures 5, 6, 7, and 8 illustrated the numerical simulation for an applied stress ratio

equivalent to the forty-five (45) degree radial loading path in the normalized stress domain.

In order to develop an optimal experimental method for determination of the failure criteria

for a given composite material, one must infer the intrinsic strength space (ISS) from the

realized strength space (RSS). Figure 5 characterizes the intrinsic strength space (ISS) in

the stress domain for the probabilistic independent and mechanistic independent case and a

particular combination of the joint probability function scale (13I and 32) and shape (co1 and

ct2) parameters.
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Figures 6, 7, and 8 depicted the realized strength space (RSS) for an applied stress

ratio equivalent to the forty-five (45) degree radial loading path in the normalized stress

domain and a particular combination of the joint probability function scale (3 1 and 32) and

shape (cq1 and ct2) parameters. Figure 6 described the RSS for the composite samples

associated with fiber failure. Figure 7 described the RSS for the composite samples asso-

ciated with matrix failure. Figure 8 described the RSS for the composite samples which

failed by fiber and/or matrix. The failure modes were observed by the intermixing of the

opened and closed points.

Figure 9 was based on the initial conditions and exhibited the realized strength space

in the stress domain for five (5) different normalized applied stress ratios at the ten (10),

thirty (30), forty-five (45), sixty (60), and eighty (80) degree radial loading paths and for

the particular combination of the joint probability function scale (3I and 32) and shape ((xl
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and cO2) parameters. This RSS exhibited which composite samples failed by fiber and/or

by matrix for various applied stress ratios.
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Realized Strength Space 0=10, 30, 45, 60, 80

Figures 10 and 11 were based on the numerical simulation initial conditions for an

applied stress ratio equivalent to the forty-five (45) degree radial loading path in the nor-

malized stress domain and a particular combination of the joint probability function scale

(131 and 132) and shape (al and at2) parameters. Figure 10 described the biaxial relative

frequency strength space in the stress domain and Figure 11 described the biaxial joint

probability strength space in the Weibull probability space. The biaxial relative frequency

strength space exhibited the fraction of the sample distribution which failed by fiber and/or

matrix. A unimodal WeibuU cumulative distribution function appears as a linear function in

the Weibull probability space. Of particular interest to this study was that the joint

probability strength space was not linear. This was due to the bimodal condition where
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two statistical modes were interacting. For reliability, the lower tail of a particular sample

distribution was of major importance in the development of any failure criterion.
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Figures 12 and 13 described a mean realized strength contour in the stress domain

which was based on the numerical simulation of the seventeen (17) discreet applied stress

ratios and the joint probability scale (P11 and 132) and shape (cc1 and cX2) parameters. Fig-

ure 12 was normalized by the uniaxial scale parameters (131 and 132) and Figure 13 was

normalized by the uniaxial mean strength at the applied stress ratios equivalent to the zero

(0) and ninety (90) degree radial loading paths in the normalized stress domain.

For the biaxial L/I numerical simulation, the mean realized strength contour defined

the failure envelope or failure surface in the stress domain. Biaxial stress states interior to

the domain bounded by the failure envelope or failure surface was the safe region. Biaxial

stress staies exterior to the domain bounded by the failure envelope or failure surface was

the unsafe region.
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B. ANALYTICAL EVALUATION OF MODEL

Figures 14 and 15 described the theoretical mathematical model failure functions in

the stress domain for five (5) applied stress ratios and were based on the particular combi-

nation of the joint probability scale (3I and P2) and shape (a l and c2) parameters. The

five (5) normalized applied stress ratios were based on the zero (0), thirty-nine (39), forty-

five (45), fifty-one (51), and ninety (90) degree radial loading paths. The trends for

increasing the transformed theta from the normalized zero (0) degree radial loading path in

the longitudinal or fiber direction to the normalized ninety (90) degree radial loading path in

the transverse or matrix direction were that the failure function curves shifted to the left.

Figures 16 and 17 described the joint probability failure function and reliability func-

tion in the stress domain for the applied stress ratio based on the normalized forty-five (45)

degree radial loading path. By analyzing the longitudinal or fiber and the transverse or

matrix components of the reliability and failure functions, one observed, in this particular
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case, that there exists a transition area or crossover area, where the two joint probability

functions were a function of both components in the fiber and matrix directions. As a

result, both the reliability and failure functions were characterized by a bimodal distribution

where two statistical modes were interacting.

Figure 18 exhibited the failure function at the applied stress ratio based on the nor-

malized forty-five (45) degree radial loading path for the theoretical model with the numeri-

cal simulation biaxial relative frequency strength space superimposed. Figure 19 exhibited

the failure function and the longitudinal or fiber and transverse or matrix components of the

failure function with the numerical simulation biaxial relative frequency strength space

superimposed. Figure 19 exhibited the fiber and matrix transition or crossover area of the

sample distribution, which was characterized by the two failure function components

interacting.
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Figures 20 and 21 exhibited the analytical mean strength contour evaluated at the sev-

enteen (17) applied stress ratios with the biaxial numerical simulated mean realized strength

contour superimposed. Figure 20 was normalized by the uniaxial scale parameters (Pl and

P2). Figure 21 was normalized by the uniaxial mean strength at the applied stress ratios

equivalent to the zero (0) and ninety (90) degree radial loading paths in the normalized

stress domain. Either mean strength contour defined the failure envelopes or failure sur-

faces in the failure domain which was superimposed in the stress domain. .

Figures 22 and 23 exhibited the analytical mean strength contour (failure envelope or

failure surface) which was normalized by the uniaxial scale parameters (P1 and P2) with

the percentile strength contours (fail envelope or failure surface) at the ten (10) percentile

and the ninety (90) percentile superimposed. In Figure 23 the biaxial numerical simulation

mean strength contour was superimposed. From the theoretical model one would
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analytically develop percentile contour failure envelopes in order to describe the fraction of

the sample distribution which failed (lower bound or worst case).
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Figures 24, 25, 26, 27, ari " were based on the initial conditions and the particular

combination of the joint probability scale and shape parameters and exhibited the analytical

failure distribution in the stress domain as a function of the changes in the applied stress

ratios. The normalized applied stress ratios were based on the fifty-five (55), forty-eight

(48), forty-two (42), thirty-five (35), and thirty (30) degree radial loading paths. The

objective was to analyze the unimodal and bimodal distributions of the analytical failure ,

function over a particular applied stress ratio range. At the normalized fifty-five (55) 1.
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practically all composite failures were caused by fiber failure. The failure functions associ-

ated with the normalized applied stress ratios at the forty-eight (48), forty-two (42), and

thirty-five (35) radial loading paths were characterized as a bimodal distribution by the fail-

ure function component transition or crossover region. This would indicate that the com-

posite failures were caused by both fiber failures and matrix failures.

From this demonstration one could conclude that there existed a specific applied

stress ratio range where the failure function as well as the reliability function would exhibit

a bimodal distribution and a specific applied stress ratio range where both functions would

exhibit an unimodal distribution. Of primary interest was the bimodal distributions where

two statistical modes were interacting.

Figures 29, 30, and 31 were based on the initial conditions and an applied stress ratio

normalized at the forty-five (45) degree radial loading path and exhibited the theoretical

failure function in the stress domain as a function of the changes in the joint probability

shape parameters (al and az2). Figures 29 and 31 exhibited that the failure functions

associated with the high-high (c1 = 60 and a2 = 60) and low-low (a l = 5 and cz2 = 5)

joint probability shape parameter combinations were not distinguishable from the unimodal

distribution. Figure 30 exhibited that the failure function associated with the medium-low

(c1 = 20 and (X2 = 5) joint probability shape parameter combination was characterized by a

bimodal distribution.

From this demonstration one could conclude that the bimodal distribution was

attributed to the degree of dispersion or scatter as exhibited by the various combinations of

the joint probability shape parameters. A high-high joint probability shape parameter com-

bination would exhibit a very narrow applied stress ratio range for the bimodal distribution.

A low-low joint probability shape parameter combination would exhibit a large applied

stress ratio range for the bimodal distribution. As a result, a high-high joint probability
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shape parameter combination was recommended for little or no dispersion (scatter) in the

stress domain.

Figures 32 and 33 exhibited the analytical mean strength contours which were based

on the initial conditions, the seventeen (17) applied stress ratios, and changes in the joint

probability shape parameters (cx1 and (X2). The results indicated that the failure envelope or

failure surface area decreased in size with decreases in the joint probability shape parameter

combinations. In addition, the results indicated that the failure envelopes or failure surfaces

changed from an independent appearance at the high-high joint probability shape parameter

combination (al = 60 and Ct2 = 60) to a dependent appearance for the remaining joint

probability shape parameter combinations.
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Based on a Weibull weakest link (L) formulation [Ref. 14]:

P2 =  P1 LI

where

32 <31 if a > I and

for L2 > Ll

The objective was to demonstrate the role of the shape parameter (a) on the size and mean

strength of a particular structure. If the size of a particular structure increased (L2) with the

shape parameter (ac) fixed, then the mean strength would decrease based on 132 < 131. In

addition, if the shape parameter (x) decreased (increased dispersion) with the size fixed,

then the mean strength of a particular structure would decrease based on 132 < 13.

From this demonstration one could conclude that a high-high shape parameter combi-

nation exhibited a large failure envelope or failure surface (safe region) with little or no 5,!
dispersion (scatter) and a very narrow range where the two failure statistical modes

interacted. In other words, the size and shape of the failure envelope or failure surface was

largely dependent on the joint probability shape parameters (al and (X2).
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V. CONCLUSIONS AND RECOMMENDATIONS

For the probabilistic and mechanistic independent case, the failure envelope or failure

surface as presented by a mean strength contour (failure criterion) in this particular study

gave the phenomenological appearance of mechanistic dependency. This result would give

the erroneous inference that the intrinsic strengths were coupled and dependent, and the

failure mechanisms were interacting. Whereas, this study demonstrated that the size and

shape of the phenomenological failure envelope or failure surface were dependent on the

strength variability of the uniaxial shape parameter (c1 and ax2) combinations.

This study covered the two dimensional probabilistic independent and mechanistic

independent case. As for recommendations, further analysis in three dimensions (including

the case where the shear stress is non-zero) is required as well as an extension to the other

three cases:
1. probabilistic dependent and mechanistic independent case.

2. probabilistic independent and mechanistic dependent case.

3. probabilistic dependent and mechanistic dependent case.

The objective is to infer the intrinsic strength space from the realized strength space

via a numerical simulation of an analytical model for each of the four cases. Numerical

simulation would identify the cause (or modes) of failure whether it was by fiber failure, or

by matrix failure, or by shear failure. The failure mechanisms cannot be readily identified

with the analytical model. Such understanding would form definitive recommendations for

composite material development, such as identifying the benefits associated with improving

the fiber or matrix or the interface in order to achieve the desired reliability under combined

stress state conditions. Identification of the failure modes by numerical simulation would

also aid the definition of experimental detection techniques for quality assurance.
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APPENDIX A

THEORETICAL MATHEMATICAL MODEL

The theoretical model was derived for a stress domain and was expressed as a func-

tion of a strength vector, an applied stress ratio (radial loading path), and the joint

probability function shape (ac) and scale (03) parameters. The applied stress ratio in the

normalized domain (normalized by P31 and 132) was equivalent to the transformed theta (0.

and was defined as (Figure 34):

e = tan- 1 [(02/cl) * (31/32)]

where:

(1) 02/01 = tan (01) * (P32/131) in the normalized domain.

p2
P 100

P2 =1

1S -STRESS

VECTOR

e -TRANSFORMED
THETA

Q3 -SAMPLE

Figure 34

Applied Stress Ratio in Normalized Domain
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The applied stress ratio in the stress domain was equivalent to the physical theta (0) and

was defined as:

0 - tan- 1 (;21aI).

The transformed theta was used in determining the physical theta in the stress domain.

Therefore, the applied stress ratio in the stress domain for this study was defined as (Figure

35):

0 = tan- 1 [tan (01) * (32/1)]

2 S -STRESS VECTOR 131 = 100
132 = 1

0 -PHYSICAL THETA

14

100 al

Figure 35

Applied Stress Ratio in Physical Domain

In the stress domain the stress component in the longitudinal or fiber direction was

defined by a strength vector (S) as:

(l= (ISl) * cos (0).
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The stress component in the transverse or matrix direction was defined by a strength vector

(S) as:

(YI = (ISI) * sin (0).

Based on joint probability [R(ISI) = RI(ISI) * R2(ISI)], the theoretical model reliability

function in the stress domain was expressed as:

R(ISI) = exp [-(ISI*cos (0)/31)all*exp [-(ISI*sin (0 )/1 2)cc2].

The theoretical model failure function in the stress domain was defined as:

F(ISI) = 1 - R(ISI)

FOSi) = 1 - [exp [-(ISl*cos (0)/131)°l]*exp [-(ISI*sin (0)/ 132 )°2]].

where:

(1) R(ISI) was the joint probability reliability function.

(2) F(ISI) was the joint probability failure function.

(3) (ISI) * cos (0) was the strength component in the longitudinal or fiber direction as
defined by the strength vector (S).

(4) (ISI) * sin (0) was the strength component in the transverse or matrix direction as
defined by the strength vector (S).

(5) (x and 3I were the joint probability shape (A1 or alfal) and scale (BI or betal)
parameters respectively in longitudinal or fiber direction.

(6) c2 and P2 were the joint probability shape (A2 or alfa2) and scale (B2 or beta2)
parameters respectively in transverse or matrix direction.

The theoretical model defined the fail envelope or failure surface by a mean strength

distribution or contour and a percentile strength distribution or contour for the seventeen
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(17) applied stress ratios, a particular sample size, and a particular combination of the joint

probability shape parameters (cxl and c2).

The theoretical mean failure surface, as defined by a mean strength distribution or

contour, was derived from the concept of Expected Value [Ref. 15]:

4 ft xf(x) dx

L I [l-F(ISI)] ds

where:

(1) 1 - F(ISI) is the theoretical reliability function [R(ISI)].

A Gauss Quadrature method for the integration of the Expected Value mean

[4. = I [1-F(ISI)] ds] was used to find the mean strength distribution or contour (Appendix

D). The percentile failure surface, as defined by the percentile strength Aistribution or

contour, was an iterative process of the failure function F(ISI) (Appendix G).
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APPENDIX B

BIAXIAL L/T NUMERICAL SIMULATION

The numerical simulation of a theoretical model was equivalent to actual experimental

testing. The biaxial L/T numerical simulation was a function of intrinsic strengths, an

applied stress ratio (radial loading path), and the joint probability function shape (c) and

scale (3) parameters. The applied stress ratio in the normalized domain (normalized by 131

and 32) was equivalent to the transformed theta (0) and was defined as (Figure 36):

0 = tan" 1 (T/L 031/132)

where:

(1) T is the transverse stress in the matrix direction.

(2) L is the longitudinal stress in the fiber direction.

S131 = 100
132132 =1

: -STRENGTH

VECTOR
- 6 -TRANSFORMED

0" THETA
13 -SAMPLE

1 L
131

Figure 36

Applied Stress Ratio in Normalized Domain
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The transformed theta was used to determine the biaxial L/T (longitudinal/transverse)

applied stress ratio in the stress domain. Therefore, the applied stress ratio in the stress

domain for this study was defined as (Figure 37):

BIAXIAL L/T = (31/32) / tan (6).

T S -STRENGTH VECTOR 31 =100
p32 = 1

e -PHYSICAL THETA
a',

1

100 L

Figure 37

Applied Stress Ratio in Physical Domain

The biaxial numerical simulation was based on the joint probability reliability function F

[R(X) = RI(X1) * R2(X2)]. The numerical simulation reliability function and failure

function in the stress domain were defined respectively as:

R(X) = exp [-((X1/[31l +(X2/132 )o2)]

F(X) = 1-R(X) = 1-exp [-((Xl/Pl)aXl+(X2/3 2 )oa2)]

where:

(1) R(X) was the reliability function and was equivalent to the probability of success
associated with the random variables X I and X2.
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(2) F(X) was the failure function and was equivalent to the probability of failure asso-
ciated with the random variables X I and X2.

(3) Xi was the random intrinsic strength in the longitudinal or fiber direction.

(4) X2 was the random intrinsic strength in the transverse or matrix direction.

(5) cxl and PI were the joint probability shape ( Al or alfal) and scale (BI or betal)
parameters respectively in the longitudinal or fiber direction. *

(6) c(2 and 32 were the joint probability shape (A2 or alfa2) and scale (BI or beta2)
parameters respectively in the transverse or matrix direction.

For the numerical simulation Xl/X2 was the intrinsic strength ratio and biaxial LIT

was the applied stress ratio in the stress domain. Under a combined stress state, the fol-

lowing strength and stress conditions in the realized strength space were evaluated by the

numerical simulation:

(1) If X l/X2 < biaxial L/T, the composite failed by fiber (Figure 38).

(2) If X I/X2 > biaxial L/T, the composite failed by matrix (Figure 39).

(3) If Xl/X2 = biaxial Lf/T, the composite failed by both fiber and matrix. [Ref. 16]

T C3 -FIBER
-MATRIX

X2
X2

X2 X1

L

Figure 38

Composite Fails by Fiber
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Figure 39

Composite Fails by Matrix

Joint probability for this study was defined as the intrinsic strength which was acti-

vated by the stress (aj1) in the longitudinal or fiber direction was independent of the intrin-

sic strength which was activated by the stress (a2) in the transverse or matrix direction.

The strengths were uncoupled and the failure mechanisms were not interacting. An exam-

ple follows (Figure 40):

Take a composite that has high strength in matrix (X2') and low strength in fiber (X V),
the composite sample failed by fiber. Take a composite that has medium strength in
matrix (X2") and medium strength in fiber (XI"), the composite sample in this case
failed by fiber. Take a composite that has low strength in matrix (X2"') and high
strength in fiber (XI"'), the composite sample failed by matrix. [Ref. 17]

For the numerical simulation the absolute intrinsic stengths for each sample defined

the intrinsic (not observable) strength space (ISS) via a spatial point in the biaxial stress

domain. The combined strength-stress ratio comparison defined the realized (observable)

sLrength space (RSS) via a strength vector in the biaxial stress domain.

The biaxial numerical simulation failure envelope or failure surface in the stress

domain was defined by a mean strength distribution or contour, where the mean strength

was defined as the sum of the realized strength vectors divided by the number o17 samples

5"
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Figure 40

Joint Probability (Independent) Realized Strength Space

for each of the seventeen (17) applied stress ratios, and was a function of a particular sam-

ple size and a particular combination of the joint probability function shape parameters (x I

and cX2).

Appendix C exhibited two biaxial L/T numerical simulation worksheets. One was to

describe the formulation of the numerical simulation. The second was to provide an exam-

pie of the numerical simulation.

54

% %- . . *5S S* I



APPENDIX C

NUMERICAL SIMULATION FORMULATION

The most important aspects of the biaxial L/T numerical simulation [Ref. 18] for a

particular sample size, applied stress ratio and the joint probability scale (3 I and [32) and

shape (czl and CX2) parameters in the stress domain were:

(1) the intrinsic strength space

(2) the realized strength space

(3) the relative frequency strength space

(4) the joint probability strength space

(5) the mean realized strength and the mean realized strength distribution

The first worksheet described the formulation of the numerical simulation. The

second worksheet provided an example numerical simulation that was based on a sample

size of 19, an applied stress ratio normalized for the forty-five (45) degree radial loading

path, and the joint probability shape (ao1 = 60 and a2 = 5) and scale (13 = 100 and [32 = 1)

parameters. The worksheets were based on Microsoft Excel software.
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: APPENDIX D

GAUSS QUADRATURE MEAN STRENGTH INTEGRATION

A Gauss Quadrature method [Ref. 191 was used for the integration of the Expected

Value mean [g. = f [l-F(ISI)] ds] in order to find the theoretical model mean strength

el distribution in the stress domain for each of the seventeen (17) applied stress ratios based

on a particular combination of the joint probability shape (I and ct2) and scale (131 and

P32) parameters. The computer program was formatted in Microsoft Basic. There were

two basic programs developed:

(1) the mean integration for the applied stress ratios which were based on the
normalized zero (0) through ninety (90) degree radial loading paths:

REM GAUSS QUADRATURE MEAN INTEGRATION

REM MEAN INTEGRATION FOR NORMALIZED THETA=0 TO 90

OPEN "MEAN DATA AA=" FOR OUTPUT AS #7
enter:
DIM gnums(48)
REM type gnums constants here
gnums(1) = -.9951872199970214#
gnums(2) = -.9747285559713095#
gnums(3) =-.9382745520027328#
gnums(4) =-.886415527004401#
gnums(5) =-.8200019859739029#
gnums(6) =-.7401241915785544#
gnums(7) =-.6480936519369755#
gnums(8) =-.5454214713888395#
gnums(9) =-.4337935076260451#
gnums(10) =-.3150426796961634#
gnums(11) =-.1911188674736163#
gnums(12) =-6.405689286260564D-02

FOR i = 13 TO 24 STEP 1
gnums(i) = -gnums(25-i)

NEXTi
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gnums(25) = .0123412297999872#
gnums(26) = 2.8531 38862893366 D-02
gnums(27) = 4.427743881 741 981 D-02
gnums(28) = 5.929858491543678D-02
gnums(29) = .0733464814110803#
gnums(30) = 8.6190161531953270-02
gnums(31) = 9.761865210411388D-02
gnums(32) = .1074442701159656#
gnums(33) = .1155056680537256#
gnums(34) = .1216704729278034#
gnums(35) = .1258374563468283#
gnums(36) = .1279381953467522#

FOR i = 37 TO 48 STEP 1
gnums(i)=gnums(73-i)

NEXT i

REM THETAS=NORMALIZED THETA
10 PRINT "input THETAS (in degrees)";
INPUT THETAS

IF (THETAS<0) THEN CLOSE #7
IF (THETAS<0) THEN STOP

PRINT #7,"TH ETAS=";TH ETAS

REM input limits of integration here (right > left)
PRINT "input the limits of integration (right > left)"

PRINT "input left";
INPUT left

PRINT#7,"left limit of integration=";left

PRINT"input right";
INPUT right

PRINT#7,"right limit of integration=";right

REM A1=ALFA1; A2=ALFA2; B1=BETA1; 82=BETA2
REM ALFA AND BETA ARE SHAPE AND SCALE PARAMETERS
REM RESPECTIVELY

A1=60
A2=5
131=100
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B2=1

REM SIGMA=SIGMA2ISIGMA1
THETAS1 = THETAS *3141592654#/ 180
SIGMA=TAN(THE"TAS1 )*B2/B1

REM THETA=PHYSICAL THETA
THETA= ATN(SIGMA)

cl = -(left + right) / (right - left)

c2 =. * (right -left)

ANSWER= 0

REM FUNCTION TO BE INTEGRATED
FOR i = 1 TO 24

X = (gnumns(i) - ci )*c2
F = EXP(-((X*COS(THETA)/B1 )^A + (X*SIN(THETA)/B2)A A2))

ANSWER = ANSWER + gnums(i+24) *F

N EXT

ANSWER = ANSWER * c2

PRINT "ANSWER = ";ANSWER

PRINT #7,"ANSWER=";ANSWER
PRINT #7,""

GOTO 10
END

(2) the mean integration for the applied stress ratios which were based only on the
normalized (uniaxial) zero (0) and ninety (90) degree radial loading paths:

REM GAUSS QUADRATURE MEAN INTEGRATION

REM MEAN INTEGRATION FOR NORMALIZED THETA=0 AND 90 ONLY

OPEN "MEAN DATA A=" FOR OUTPUT AS #7
enter:
DIM gnums(48)
REM type gnumns constants here
gnums(1) = -.9951872199970214#

* gnums(2) =-.9747285559713095#
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gnums(3) =-.9382745520027328#
gnums(4) =-.886415527004401#
gnums(5) =-.8200019859739029#
gnums(6) =-.7401241915785544#
gnums(7) =-.6480936519369755#
gnums(8) =-.5454214713888395#
gnums(9) =-.4337935076260451#
gnums(10) =-.3150426796961634#
gnums(11) =-.1911188674736163#
gnums(1 2) =-6.405689286260564D-02

FOR i = 13 TO 24 STEP 1
gnums(i) = -gnums(25-i)

NEXTi

gnums(25) = .0123412297999872#
gnums(26) = 2.853138862893366D-02
gnums(27) = 4.427743881 741 981 D-02
gnums(28) = 5.929858491 543678D-02
gnums(29) = .0733464814110803#
gnums(30) = 8.619016153195327D-02
gnums(31) = 9.761865210411388D-02
gnums(32) = .1074442701159656#
gnums(33) = .1155056680537256#
gnums(34) = .1216704729278034#

-gnums(35) = .1258374563468283#
gnums(36) = .1279381953467522#

FOR i = 37 TO 48 STEP 1
gnums(i)=gnums(73-i)

NEXT i

REM THETAS=THETA NORMALIZED
10 PRINT "input THETAS (in degrees)";
INPUT THETAS

* iF (THETAS<0) THEN CLOSE #7
4 IF (THETAS<0) THEN STOP

PRINT #7,"TH ETAS=";TH ETAS

REM nputlimts o intgraion ere rigt > eft

PRMT inputt limits of integration r (right > left)"

PRINT "input left";
INPUT left
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PRINT#7,"left limit of integration=';left

PR! N1"input right";
INPUT right

PRINT#7,"right limit of i nteg ratio n=";rig ht

REM A1=ALFA1; A2=ALFA2; B1=BETA1; B2=BETA2
REM ALFA AND BETA ARE SHAPE AND SCALE PARAMETERS
REM RESPECTIVELY

Al1=60
A2=5
B1=100
132=1

REM THETAS1 =PHYSICAL THETA
THETASi = THETAS *3.141592654# /180

cl = -(left + right) / (right - left)
c2 =. 5* (right - left)

ANSWER= 0

REM FUNCTION TO BE INTEGRATED
FOR i = 1 TO 24

X = (gnums(i) - cl)*c2
F = EXP(- ((X*COS(TH ETAS 1)/B1) 'A1 + (X*SIN(THETAS1 )/B2)AA2))

ANSWER = ANSWER + gnums(i+24) *F

NEXT i

ANSWER = ANSWER * c2

PRINT "ANSWER = ";ANSWER
PRINT
PRINT #7,"ANSWER=";ANSWER
PRINT #7,""

GOTO 10
END
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APPENDIX E

SIMULATION/MODEL MEAN STRENGTH WORKSHEET

This parti, ular worksheet exhibited the formulation of the mean strength failure

envelopes or failure surfaces in the stress domain as defined by the failure criteria for both

cases. For the biaxial L/T numerical simulation and the theoretical mathematical model, the

failure envelope or failure surface was defined as:

(1) the mean strength distribution or contour of the seventeen (17) applied stress ratios
for a particular sample size and a particular shape parameter (cx1 and cX2) combina-
tion with the mean strength distribution or contour normalized by the joint
probability function (uniaxial) scale parameters (PI and 132).

(2) the mean strength distribution or contour of the seventeen (17) applied stress ratios
for a particular sample size and a particular shape parameter (ccI and (X2) combina-
tion with the mean strength distribution or contour normalized by the mean strength
at the normalized (uniaxial) zero (0) degree and ninety (90) degree radial loadingpaths (transformed theta) respectively.

A mathematical mean function based on the uniaxial longitudinal and transverse scale

(P) and shape (cx) parameters and the Gamma function was used at the normalized

(uniaxial) zero (0) degree and ninety (90) degree radial loading paths for correlation of the

numerical simulation and theoretical model mean strengths at the respective radial loading

paths. The mathematical mean function was defined as: p.r = 3F(1 + 1/a) [Ref. 20].
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APPENDIX F

RELIABILITY/FAILURE FUNCTION WORKSHEET

This particular worksheet exhibited the formulation of the joint probability reliability

and failure functions based on a applied stress ratio and a particular combination of the joint

probability shape (Ocl and Cc2) and scale (13i and 32) parameters.
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APPENDIX G

PERCENTILE STRENGTH WORKSHEET '

This particular worksheet exnibited the formulation of the percentile strength failur'

envelopes or failure surfaces in the stress domain as defined by the theoretical model failure

criteria. The percentile failure contour was obtained at the different combined stress levels

by assigning F(ISI) a constant percentile (i.e., F(IS[) = 0.10 for the ten (10) percentile

contour) and solving for (IS) by iteration. This iteration was repeated for the seventeen F

(17) applied stress ratios for a particular combination of the joint probability shape 6

parameters (oq and ('2).
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